Add like
Add dislike
Add to saved papers

Effect of Hydrofluoric Acid Concentration and Etching Time on Bond Strength to Lithium Disilicate Glass Ceramic.

Operative Dentistry 2017 November
The aim of this study was to evaluate the influence of different concentrations of hydrofluoric acid (HF) associated with varied etching times on the microshear bond strength (μSBS) of a resin cement to a lithium disilicate glass ceramic. Two hundred seventy-five ceramic blocks (IPS e.max Press [EMX], Ivoclar Vivadent), measuring 8 mm × 3 mm thickness, were randomly distributed into five groups according to the HF concentrations (n=50): 1%, 2.5%, 5%, 7.5%, and 10%. Further random distribution into subgroups was performed according to the following etching times (n=10): 20, 40, 60, 120, and 20 + 20 seconds. After etching, all blocks were treated with a silane coupling agent followed by a thin layer of an unfilled resin. Three resin cement cylinders (∅=1 mm) were made on each EMX surface, which was then stored in deionized water at 37°C for 24 hours before testing. The μSBS was in a universal testing machine at a crosshead speed of 1 mm/min until failure. Data were submitted to two-way analysis of variance, and multiple comparisons were performed using the Tukey post hoc test (α=0.05). One representative EMX sample was etched according to the description of each subgroup and evaluated using scanning electron microscopy for surface characterization. The HF concentrations of 5%, 7.5%, and 10% provided significantly higher μSBS values than 1% and 2.5% (p<0.05), regardless of the etching times. For 1% and 2.5% HF, the etching times from 40 to 120 seconds increased the μSBS values compared with 20 seconds (p<0.05), but etching periods did not differ within the 5%, 7.5%, and 10% HF groups (p>0.05). The effect of re-etching was more evident for 1% and 2.5% HF (p<0.05). Different HF concentrations/etching times directly influenced the bond strength and surface morphology of EMX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app