JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gold Nanorod Mediated Chlorhexidine Microparticle Formation and Near-Infrared Light Induced Release.

Gold nanorods (GNR) are good light harvesting species for elaboration of near-infrared (NIR) responsive drug delivery systems. Herein, chlorhexidine microparticles are grown directly on the surface of gold nanorods and then stabilized with polyelectrolyte multilayer encapsulation, producing novel composite drug-GNR particles with high drug loading and NIR light sensitivity. Crystallization of chlorhexidine is caused by the ionic strength of the chloride solution that has been demonstrated via formation of a homogeneous porous spherical structure at 0.33 M CaCl2 . By introducing GNRs into the CaCl2 solution, the nucleation of chlorhexidine molecules and size of produced spheres are affected, since GNRs act as sites for chlorhexidine nucleation. Similarly, when GNRs are replaced by chlorhexidine seeds (5.2 ± 1.7 μm), a core-shell crystal structure is observed. The encapsulated GNR/chlorhexidine composites are responsive to NIR light (840 nm) that increases the temperature at the chlorhexidine crystals, followed by microparticle dissolution and rupture of capsules which is illustrated with confocal microscopy and SEM. Furthermore, a stepwise burst release of chlorhexidine can be induced by multiple cycles of NIR light exposure. The GNR/chlorhexidine composites show good biocompatibility and antimicrobial activity. The proposed method of antibacterial drug release may therefore indicate that this NIR responsive chlorhexidine composite may be useful for future clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app