JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Full Characterization of Localization Diversity in the Human Protein Interactome.

Spatial-temporal regulation among proteins forms dynamic networks in cells. Coexistence in common cell compartments can improve biological reliability of the protein-protein interactions. However, this is usually overlooked by most proteomic studies and leads to unrealistic discoveries. In this paper, we systematically characterize the interaction localization diversity in the human protein interactome using the localization coefficient, a novel metric proposed for assessing how diversely the interactions localize among cell compartments. Our analysis reveals the following: (1) the subcellular networks of the nucleus, cytosol, and mitochondrion are dense but the interactions tend to localize in specific cell compartments, whereas the subnetworks of the secretory-pathway, membrane, and extracellular region are sparse but the interactions are diversely localized; (2) the housekeeping proteins tend to appear in multiple compartments, while the tissue-specific proteins present a relatively flat profile of localization breadth; (3) the autophagy proteins tend to diversely localize in multiple compartments, especially those with high connectivity, compared with the apoptosis proteins; (4) the proteins targeted by small-molecule drugs show no preference for compartments, whereas the proteins directed by antibody-based drugs tend to belong to transmembrane regions with a strong diversity. In summary, our analysis provides a comprehensive view of the subcellular localization for interacting proteins, demonstrates that localization diversity is an important feature of protein interactions, and shows its ability to highlight meaningful biological functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app