Add like
Add dislike
Add to saved papers

One-Step Identification of Antibody Degradation Pathways Using Fluorescence Signatures Generated by Cross-Reactive DNA-Based Arrays.

Therapeutic antibodies are prone to degradation via a variety of pathways during each stage of the manufacturing process. Hence, a low-cost, rapid, and broadly applicable tool that is able to identify when and how antibodies degrade would be highly desirable to control the quality of therapeutic antibody products. With this goal in mind, we have developed signature-based sensing system to discriminate differently degraded therapeutic antibodies. The use of arrays consisting of conjugates between nanographene oxide and fluorophore-modified single-stranded DNAs under acidic pH conditions generated unique fluorescence signatures for each state of the antibodies. Multivariate analyses of the thus obtained signatures allowed identifying (i) common features of native, denatured, and visibly aggregated antibodies, (ii) complicated degradation pathways of therapeutic omalizumab upon time-course heat-treatment, and (iii) the individual compositions of differently degraded omalizumab mixtures. As the signature-based sensing has the potential to identify a broad range of degraded antibodies formed by different kinds of realistic stress types, this system may serve as the basis for high-throughput assays for the screening of antibody manufacturing processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app