Add like
Add dislike
Add to saved papers

On the Dimensional Control of 2 D Hybrid Nanomaterials.

Thermotropic smectic liquid crystalline polymers were used as a scaffold to create organic/inorganic hybrid layered nanomaterials. Different polymers were prepared by photopolymerizing blends of a hydrogen bonded carboxylic acid derivative and a 10 % cross-linker of variable length in their liquid crystalline phase. Nanopores with dimensions close to 1 nm were generated by breaking the hydrogen bonded dimers in a high pH solution. The pores were filled with positively charged silver (Ag) ions, resulting in a layered silver(I)-polymeric hybrid material. Subsequent exposure to a NaBH4 reducing solution allowed for the formation of supported hybrid metal/organic films. In the bulk of the film the dimension of the Ag nanoparticles (NPs) was regulated with subnanometer precision by the cross-linker length. Ag nanoparticles with an average size of 0.9, 1.3, and 1.8 nm were produced inside the nanopores thanks to the combined effect of spatially confined reduction and stabilization of the nanoparticles by the polymer carboxylic groups. At the same time, strong Ag migration occurred in the surface region, resulting in the formation of a nanostructured metallic top layer composed of large (10-20 nm) NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app