Add like
Add dislike
Add to saved papers

Fine Tuning of MOF-505 Analogues To Reduce Low-Pressure Methane Uptake and Enhance Methane Working Capacity.

Angewandte Chemie 2017 September 12
We present a crystal engineering strategy to fine tune the pore chemistry and CH4 -storage performance of a family of isomorphic MOFs based upon PCN-14. These MOFs exhibit similar pore size, pore surface, and surface area (around 3000 m(2)  g(-1) ) and were prepared with the goal to enhance CH4 working capacity. [Cu2 (L2)(H2 O)2 ]n (NJU-Bai 41: NJU-Bai for Nanjing University Bai's group), [Cu2 (L3)(H2 O)2 ]n (NJU-Bai 42), and [Cu2 (L4)(DMF)2 ]n (NJU-Bai 43) were prepared and we observed that the CH4 volumetric working capacity and volumetric uptake values are influenced by subtle changes in structure and chemistry. In particular, the CH4 working capacity of NJU-Bai 43 reaches 198 cm(3) (STP: 273.15 K, 1 atm) cm(-3) at 298 K and 65 bar, which is amongst the highest reported for MOFs under these conditions and is much higher than the corresponding value for PCN-14 (157 cm(3) (STP) cm(-3) ).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app