Add like
Add dislike
Add to saved papers

Novel porcine model for calcium oxalate stone formation.

BACKGROUND: Mechanisms for calcium-based stone formation are not clearly delineated. Porcine are the most anatomically and physiologically congruent mammal to humans. Our objectives were to develop a cost-effective and easily reproducible porcine model for the study of calcium-based nephrolithiasis.

METHODS: Crossbred male pigs (n = 16) were assigned randomly to one of the following treatments: (1) control; (2) ethylene glycol (EG) + vitamin D (VD); (3) EG + ammonium chloride (AC); (4) EG + gentamicin (G); (5) EG + Lasix; (6) EG + VD + AC; (7) EG + VD + G. Treatments were administered for 28 days; blood and urine were collected on day 0, 14, and 28. At the endpoint of the study, renal tissue was collected for gross and microscopic analysis of crystal stone formation and inflammation.

RESULTS: Stone-forming parameters were observed in serum and urine. For control versus all other treatments, by day 28, serum BUN and creatinine were less (P < 0.01), urinary creatinine, citrate and pH were greater (P < 0.01), and urinary oxalate was less (P < 0.01). Histopathological analysis of H&E staining and stone analysis revealed formation of calcium oxalate stones and crystal formation within the renal cortex and medulla for all animals except control. Nephrotoxicity was observed in one animal from treatment EG + G.

CONCLUSIONS: The treatments explored in this experiment provided novel examples of cost-effective porcine models for the study of nephrolithiasis. EG + VD had the strongest indicators of nephrolithiasis without nephrotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app