Add like
Add dislike
Add to saved papers

Phagocytosis of Escherichia coli biofilm cells with different aspect ratios: a role of substratum material stiffness.

Bacterial biofilms play an important role in chronic infections due to high-level tolerance to antibiotics. Thus, it is important to eradicate bacterial cells that are attached to implanted medical devices of different materials. Phagocytosis is a key process of the innate immunity to eliminate invading pathogens. Previous research demonstrated that the efficiency of phagocytosis is affected by the aspect ratio of polymer beads. Recently, we reported that the stiffness of polydimethylsiloxane (PDMS) influences Escherichia coli biofilm formation and the biofilm cells on stiff (5:1) PDMS are 46.2% shorter than those on soft (40:1) PDMS. Based on these findings, we hypothesized that E. coli cells attached on stiff PDMS can be more effectively removed via phagocytosis. This hypothesis was tested in the present study using viability assays, flow cytometry, and cell tracking. The results revealed that shorter E. coli cells detached from stiff PDMS were easier to be phagocytized than the longer cells from soft PDMS surfaces. Furthermore, macrophage cells were found to be more motile on stiff PDMS surfaces and more effective at phagocytosis of E. coli cells attached on these surfaces. These results may help the design of better biomaterials to reduce fouling and associated infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app