Add like
Add dislike
Add to saved papers

Enhanced photoelectrochemical properties of nanocrystalline TiO2 electrode by surface sensitization with CuxO quantum dots.

Scientific Reports 2017 July 14
Nanoporous anatase TiO2 films were fabricated by a screen-printing method, and CuxO quantum dots (QDs) were deposited on the TiO2 films through successive ionic layer adsorption and reaction (SILAR). The amount of CuxO QDs on the TiO2 films are controlled by changing the number of SILAR cycles. The morphology, microstructure, optical, and photoelectrochemical properties of different CuxO sensitized TiO2 films (CuxO/TiO2) were investigated in detail. The nanoporous TiO2 film offers a large surface area for anchoring QDs. QD deposited samples exhibited a significant improvement in photoelectrochemical performance than the bare of TiO2. CuxO/TiO2, prepared with 7 SILAR cycles, showed the best photoelectrochemical properties, where the photocurrent density was enhanced to 500.01 μA/cm(2) compared with 168.88 μA/cm(2) of bare TiO2 under visible light. These results indicate that the designed CuxO/TiO2 structure possesses superior charge separation efficiency and photoelectrochemical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app