Add like
Add dislike
Add to saved papers

Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions.

Scientific Reports 2017 July 14
A series of nanocomposites of cobalt embedded in N-doped nanoporous carbons, carbon nanotubes or hollow carbon onions have been synthesized by a one-step carbonization of metal-organic-framework ZIF-67. The effect of the carbonization temperature on the structural evolution of the resulting nanocomposites has been investigated in detail. Among the as-synthesized materials, the cobalt/nanoporous N-doped carbon composites have demonstrated excellent electrocatalytic activities and durability towards oxygen reduction reaction in alkaline medium. Compared to the benchmark Pt/C catalyst, the optimized Co@C-800 (carbonized at 800 °C) exhibited high oxygen reduction reaction activity with an onset potential of 0.92 V, and a half-wave potential of 0.82 V. Moreover, the optimized Co@C-800 also showed enhanced electrocatalytic activity towards oxygen evolution reaction from water splitting, with a low onset potential of 1.43 V and a potential of 1.61 V at 10 mA cm(-2) current density. This work offered a simple solution to develop metal-organic-framework-derived materials for highly efficient electrochemical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app