Clinical Trial, Phase I
Clinical Trial, Phase II
Journal Article
Add like
Add dislike
Add to saved papers

Increased IFNγ + T Cells Are Responsible for the Clinical Responses of Low-Dose DNA-Demethylating Agent Decitabine Antitumor Therapy.

Clinical Cancer Research 2017 October 16
Purpose: Low-dose DNA-demethylating agent decitabine therapy is effective in a subgroup of cancer patients. It remains largely elusive for the biomarker to predict therapeutic response and the underlying antitumor mechanisms, especially the impact on host antitumor immunity. Experimental Design: The influence of low-dose decitabine on T cells was detected both in vitro and in vivo Moreover, a test cohort and a validation cohort of advanced solid tumor patients with low-dose decitabine-based treatment were involved. The activation, proliferation, polarization, and cytolysis capacity of CD3+ T cells were analyzed by FACS and CCK8 assay. Kaplan-Meier and Cox proportional hazard regression analysis were performed to investigate the prognostic value of enhanced T-cell activity following decitabine epigenetic therapy. Results: Low-dose decitabine therapy enhanced the activation and proliferation of human IFNγ+ T cells, promoted Th1 polarization and activity of cytotoxic T cells both in vivo and in vitro , which in turn inhibited cancer progression and augmented the clinical effects of patients. In clinical trials, increased IFNγ+ T cells and increased T-cell cytotoxicity predicted improved therapeutic responses and survival in the test cohort and validation cohort. Conclusions: We find that low-dose decitabine therapy promotes antitumor T-cell responses by promoting T-cell proliferation and the increased IFNγ+ T cells may act as a potential prognostic biomarker for the response to decitabine-based antitumor therapy. Clin Cancer Res; 23(20); 6031-43. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app