JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Supersonic Shear Wave Imaging of the Spleen for Staging of Liver Fibrosis in Rats.

The goal of the work described here was to explore the cause of spleen stiffness (SS) in hepatic fibrogenesis and evaluate the value of SS in liver fibrosis (LF) staging. LF was induced with carbon tetrachloride (CCl4 ) in rats (n = 40). Supersonic shear wave imaging and contrast-enhanced ultrasound were performed to determine liver stiffness (LS), SS and splenic hemodynamics. SS, LS and free portal pressure exhibited moderate correlations with fibrosis stage (r = 0.744-0.835, p < 0.001). Time-intensity curves of contrast-enhanced ultrasound for the spleen were presented as decreasing peak intensity and slope of decrease, and increasing time to peak. Splenic sinus dilation and congestion were observed on histopathologic analysis. The area under the receiver operating characteristic curve of SS was higher than that of LS for differentiating LF stages 0-2 from stages 3-4 (Z = 2.293, p = 0.02). SS is a reliable diagnostic marker for the assessment of LF in the CCl4 model, especially for severe fibrosis. Elevated portal pressure is the cause of increasing SS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app