JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats.

Social isolation is regarded as a cause of schizophrenia spectrum disorders. Animal models of schizophrenia are constructed by repeated early environment deprivation as an important paradigm to reveal its pathological mechanism. Male Sprague Dawley rats were assigned to either social-rearing (SR) or isolated-rearing (IR) groups during postnatal days (PNDs) 21-34. On PND 56, all rats underwent behavioral testing including locomotor activity, anxiety-related behaviors in an open field and prepulse inhibition (PPI). Then, the rats were sacrificed and prefrontal cortex (PFC) tissues were separated for high-throughput proteomics analysis and Western blot validation. Rats of the IR group showed increased spontaneous locomotion, increased anxiety-like behavior and disrupted PPI compared with rats of the SR group. Based on proteomics analysis, a total of 124 PFC proteins were found to be significantly differentially expressed between the SR group and the IR group, the most remarkable of which were glial fibrillary acidic protein (GFAP), Annexin A2 (ANXA2) and vimentin (VIM), three astrocyte biomarkers. Further Western blot measurement confirmed that the levels of GFAP, ANXA2 and VIM were increased significantly in IR rats. Adolescent social isolation induced schizophrenia-like behaviors and significantly different expression of 124 PFC proteins in adult rats, especially GFAP, ANXA2 and VIM, which suggests that astrocyte development might be involved in the neural mechanism of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app