Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mutation in the RRM2 domain of TDP-43 in Amyotrophic Lateral Sclerosis with rapid progression associated with ubiquitin positive aggregates in cultured motor neurons.

Mutations in the TAR-DNA Binding Protein-43 (TDP-43) encoding the TARDBP gene are present in amyotrophic lateral sclerosis (ALS). TDP-43 is the major component of ubiquitin-positive inclusions in motor neurons in ALS patients. We report here a novel heterozygous missense mutation in TARDBP in an ALS patient presenting a rapid form of ALS. This mutation p.N259S is located within the RNA recognition motif 2 (RRM2) in very close proximity with nucleotides in RNA. It is the first time a mutation was reported in this RRM2 domain of TDP-43. Expression of TDP-43N259S in neuronal cells NSC-34 and in primary cultures of motor neurons was associated with cytoplasmic TDP-43/ubiquitin positive inclusions. Our findings identified for the first time a mutation in ALS in the RRM2 domain of TDP-43, reinforcing the link between this RNA-binding protein, perturbations in RNA metabolism, disruption in protein homeostasis and ALS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app