Add like
Add dislike
Add to saved papers

Multipurpose efficacy of ZnO nanoparticles coated by the crustacean immune molecule β-1, 3-glucan binding protein: Toxicity on HepG2 liver cancer cells and bacterial pathogens.

The effective treatment of cancer and bacterial pathogens are two key challenges in modern nanomedicine. Here, zinc oxide nanoparticles (ZnO NPs) were fabricated using the crustacean immune molecule β-1, 3- glucan binding protein (Phβ-GBP, 100kDa) purified from the heamolymph of Paratelphusa hydrodromus. β-GBP coated zinc oxide nanoparticles (Phβ-GBP-ZnO NPs) were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and high resolution-transmission electron microscopy (HR-TEM) analyses. Phβ-GBP-ZnO NPs inhibited the growth of Staphylococcus aureus and Proteus vulgaris. Protein and nucleic acid leakage assays showed that Phβ-GBP-ZnO NPs facilitate membrane permeability leading to cell death. The antibacterial activity of Phβ-GBP-ZnO NPs was due to the high level of reactive oxygen species (ROS) release from bacterial cells post-treatment with 75μg/mL of Phβ-GBP-ZnO NPs. Confocal laser scanning microscopy pointed out that biofilm thickness was highly reduced post-treatment with nanoparticles. Cytotoxicity on human liver carcinoma (HepG2) cells highlighted that 75μg/mL of Phβ-GBP-ZnO NPs inhibited viability of HepG2 cells. Phase contrast microscopy showed key morphological changes of HepG2 cells post-treatment with Phβ-GBP-ZnO NPs. Overall, Phβ-GBP-ZnO NPs can be further considered for the development of novel drugs against microbial pathogens and HepG2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app