JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

ZnO Nanocrystal Networks Near the Insulator-Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light.

Nano Letters 2017 August 10
Networks of ligand-free semiconductor nanocrystals (NCs) offer a valuable combination of high carrier mobility and optoelectronic properties tunable via quantum confinement. In principle, maximizing carrier mobility entails crossing the insulator-metal transition (IMT), where carriers become delocalized. A recent theoretical study predicted that this transition occurs at nρ3 ≈ 0.3, where n is the carrier density and ρ is the interparticle contact radius. In this work, we satisfy this criterion in networks of plasma-synthesized ZnO NCs by using intense pulsed light (IPL) annealing to tune n and ρ independently. IPL applied to as-deposited NCs increases ρ by inducing sintering, and IPL applied after the NCs are coated with Al2 O3 by atomic layer deposition increases n by removing electron-trapping surface hydroxyls. This procedure does not substantially alter NC size or composition and is potentially applicable to a wide variety of nanomaterials. As we increase nρ3 to at least twice the predicted critical value, we observe conductivity scaling consistent with arrival at the critical region of a continuous quantum phase transition. This allows us to determine the critical behavior of the dielectric constant and electron localization length at the IMT. However, our samples remain on the insulating side of the critical region, which suggests that the critical value of nρ3 may in fact be significantly higher than 0.3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app