Add like
Add dislike
Add to saved papers

Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis.

Microbiology 2017 July
MmpL3 is a promising target for novel anti-tubercular agents, with numerous compound series identified as MmpL3 inhibitors. Despite this, there is an incomplete understanding of MmpL3 function. Here we show that Mycobacterium smegmatis MmpL3 mutant strains had an altered cell wall hydrophobicity, disrupted membrane potential and growth defects in liquid media. Compensatory mutations that restored normal growth also returned membrane potential to wild-type. M. smegmatis MmpL3 mutant strains were resistant to two anti-tubercular agents, SQ109 and AU1235, but were more sensitive to rifampicin, erythromycin and ampicillin. Exposure of M. smegmatis to AU1235 affected the cell wall composition and increased the potency of rifampicin. However, MmpL3 mutants did not prevent the dissipation of membrane potential following exposure to SQ109. These results demonstrate that in M. smegmatis, MmpL3 contributes to a number of important phenotypes such as membrane potential, cell wall composition, antibiotic susceptibility and fitness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app