JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome.

The intercalated discs that connect cardiomyocytes control cell-to-cell adhesion and communication. Several macromolecular structures (desmosomes, fascia adherens junctions, gap junctions, and sodium-channel complexes) coexist in, and confer their mechanical and electrical properties to, the intercalated disc. Traditionally, each structure was assumed to have a unique function in the intercalated disc. However, growing evidence suggests that these complexes act together in intercellular communication and adhesion, forming a single structural and functional entity - the connexome. This nascent idea has provided conceptual support for the overlapping of two diseases based on disturbance of the intercalated disc - arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS). In this Perspectives article, we present the latest findings about the functions of, and interactions between, the structures of the intercalated disc that support the concept of the connexome. We also summarize the genetic, molecular, and pathophysiological mechanisms underlying ACM and BrS, focusing on the overlap between these diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app