Add like
Add dislike
Add to saved papers

DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT).

A multi-scale Monte Carlo model is proposed to assess the dosimetric and biological impact of iodine-based contrast agents commonly used in computed tomography. As presented, the model integrates the general purpose MCNP6 code system for larger-scale radiation transport and dose assessment with the Monte Carlo damage simulation to determine the sub-cellular characteristics and spatial distribution of initial DNA damage. The repair-misrepair-fixation model is then used to relate DNA double strand break (DSB) induction to reproductive cell death. Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft characteristic k-shell x-rays (0.25-4.55 keV) up to orthovoltage (200-500 kVp) x-rays indicate that the relative biological effectiveness (RBE) for DSB induction is within a few percent of the RBE for cell survival. Because of the very short range of secondary electrons produced by low energy x-ray interactions with contrast agents, the concentration and subcellular distribution of iodine within and near cellular targets have a significant impact on the estimated absorbed dose and number of DSB produced in the cell nucleus. For some plausible models of the cell-level distribution of contrast agent, the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB induction of 1.22-1.40 for a 5-10 mg ml-1 iodine concentration in blood compared to an RWD increase of 1.07  ±  0.19 from a recent clinical trial. The modeled RWD of 2.58  ±  0.03 is also in good agreement with the measured RWD of 2.3  ±  0.5 for an iodine concentration of 50 mg ml-1 relative to no iodine. The good agreement between modeled and measured DSB and cell survival estimates provides some confidence that the presented model can be used to accurately assess biological dose for other concentrations of the same or different contrast agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app