Add like
Add dislike
Add to saved papers

The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation.

Adipose-derived mesenchymal stem cells (ADSCs) are adult multipotent cells able to differentiate into several cell lineages. Vascular endothelial growth factor (VEGF) and the shear stress associated with blood flow are considered as the most important chemical and mechanical cues that play major roles in endothelial differentiation. However, the stability of endothelial-specific gene expression has not been completely addressed yet. ADSCs in passage 3 were cultured inside the tubular silicon tubes and then exposed to VEGF or shear stress produced in a perfusion bioreactor. To investigate the differentiation, the expression levels of Flk-1, von Willebrand factor (vWF), and vascular endothelial-cadherin (VE-cadherin) were studied using Real-Time PCR. For studying the endothelial differentiation stability, mRNA levels of the genes were evaluated in certain time intervals after completion of the tests so as to determine whether the expression level of each gene in different time points was stable and remained constant or not. Application of VEGF and shear stress caused an elevation in endothelial cells' specific genes. Although there are some changes following the days after application of mechanical and chemical stimuli, the gene expression results depicted significantly higher gene expression between sequential chemically and mechanically incited groups. In conclusion, stress alone can be a differentiating factor, by itself. Our results verified the efficient stable differentiation ability of the chemical and mechanical factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app