Add like
Add dislike
Add to saved papers

Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145.

Soy molasses is a product co-generated during soybean processing that has high production and low commercial value. Its use has great potential in fermentative processes due to the high concentration of carbohydrates, lipids and proteins. This study investigated the use of Pseudomonas aeruginosa to produce biosurfactants in a soy molasses-based fermentation medium. A central composite design (CCD) was prepared with two variables and three replicates at the central point to optimize the production of biosurfactant. The concentration of soy molasses had values between 29.3 and 170.7 g/L and the initial concentration of microorganism varied between 0.2 and 5.8 g/L. All the experiments were performed in duplicate on a shaker table at 30.0 ± 1.0 °C and 120 rpm for 72 h with samples taken every 12 h. Thus, to validate the experiments, the values of 120 g/L for the initial concentration of soy molasses and 4 g/L for the initial concentration of microorganisms were used. In response, the following values were obtained at 48 h of fermentation: surface tension of 31.9 dyne/cm, emulsifying index of 97.4%, biomass concentration of 11.5 g/L, rhamnose concentration of 6.9 g/L and biosurfactant concentration of 11.70 g/L. Further analysis was carried out for critical micelle concentration (CMC) which was obtained at approximately 80 mg/L. The bands found in Fourier transform infrared spectroscopy analysis had characteristic glycolipids as reported in the literature. These values show a great potential for biosurfactant production using soy molasses as a substrate and bacteria of the species P. aeruginosa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app