Add like
Add dislike
Add to saved papers

The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study.

Carbon nanotubes (CNTs) are widely used in drug delivery systems (DDSs) due to their unique chemical and physical properties. Investigation of interactions between biomolecules and CNTs is an interesting and important subject in biological applications. In this study, we used molecular dynamics (MD) simulation to investigate the adsorption mechanism of the anticancer drug paclitaxel (PTX) on pristine and functionalized CNTs (f-CNT) in aqueous solutions. Our theoretical results show that PTX can be adsorbed on sidewalls of CNT in different methods. In the case of f-CNTs, PTX can be adsorbed on the functional groups due to the existence of polar interactions. These interactions in the CNT functionalized with polyethylene glycol (PEG), are more than the other investigated systems. Furthermore, it was found that the solubility of CNTs in aqueous solution is increased by functionalization. This is related to the intermolecular hydrogen bonds between functional groups and solvent molecules. The PEG group has the greatest effect on the solubility of the CNT in aqueous solution due to more polar interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app