Add like
Add dislike
Add to saved papers

Effects of counter anions, P-substituents, and solvents on optical and photophysical properties of 2-phenylbenzo[b]phospholium salts.

In this work, we investigated the effects of counter anions, P-substituents, and solvents on the optical and photophysical properties of 2-phenylbenzo[b]phospholium salts in solution. A series of 2-phenylbenzo[b]phospholium salts was prepared by P-alkylation or P-phenylation of 1,2-diphenylbenzo[b]phosphole followed by anion exchange reactions. X-ray crystallographic analyses of six benzo[b]phospholium salts showed that each phosphorus center has an onium nature with an essentially tetrahedral geometry.1 H NMR and steady-state UV-vis absorption and fluorescence spectroscopic measurements of these phospholium salts revealed the pivotal role of counter-anion solvation. The observed results are discussed on the basis of the association-dissociation equilibrium between a contact ion pair (CIP) and a solvent-separated ion pair (SSIP) in solution. The hexafluorophosphates exist as SSIPs and emit intense fluorescence, irrespective of the P-substituents and solvents. In contrast, the iodides are present as SSIPs in methanol but exist as equilibrium mixtures of the two emitting species, SSIP and CIP, in dichloromethane. As a consequence, fluorescence intensities of the iodides varied significantly depending on the solvents, P-substituents, and solution concentrations. These findings were studied in more detail using time-resolved fluorescence spectroscopy and fluorescence titration measurements. The light-emitting properties of the 2-phenylbenzo[b]phospholium halides in the CIPs rely on heavy atom effects derived from the counter halide anions on the S1 state of the adjacent cationic benzo[b]phosphole π-systems. The present study suggests that 2-arylbenzo[b]phospholium salts would be promising scaffolds for developing new phosphole-based ionic fluorophores that are capable of responding to external stimuli such as anionic species and solvents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app