Add like
Add dislike
Add to saved papers

Recognition of phosphopeptides by a dinuclear copper(ii) macrocyclic complex in a water : methanol 50 : 50 v/v solution.

A new triethylbenzene-derived tetraazamacrocycle containing pyridyl spacers, L, was prepared and its dinuclear copper(ii) complex was used as a receptor for the recognition of phosphorylated peptides in aqueous solution. A detailed study of the acid-base behaviour of L and its copper(ii) complexation properties as well as of the cascade species with phosphorylated anions including two peptidic substrates was carried out in a H2 O/MeOH (50 : 50 v/v) solution using different techniques, such as potentiometry, X-band EPR and DFT calculations. The association constants of the dinuclear receptor with the phosphorylated peptides and other anionic species revealed a clear preference towards phenylic phosphorylated substrates, with values ranging 3.96-5.35 log units. Single-crystal X-ray diffraction determination of the dicopper(ii) complex of L showed the copper centres at a distance of 5.812(1) Å from one another, with the phosphate group of the PhPO4 2- substrate well accommodated between them. X-band EPR studies indicated a similar structure for this cascade complex and for the other cascade complexes with the phosphorylated anions studied. DFT studies of the [Cu2 L(μ-OH)]3+ complex revealed a different conformation of the ligand that brings the two copper centres at a very short distance of 3.94 Å aided by the presence of a bridging hydroxide anion that provides a CuOCu angle of 167.3°. This complex is EPR silent, in line with the singlet ground state obtained using CASSCF(2,2) calculations and DFT calculations with the broken-symmetry approach. This species coexists in solution with a complex in a different conformation, and having a CuCu distance of 6.63 Å, in lower percentage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app