Add like
Add dislike
Add to saved papers

Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires.

Nanoscale 2017 July 28
Complex logic gate operations using organic microwires as signal transducers based on electrogenerated chemiluminescence (ECL) intensity as the optical readout signal have been developed by taking advantage of the unique ECL reaction between organic semiconductor 9,10-bis(phenylethynyl)anthracene (BPEA) microwires and small molecules. The BPEA microwires, prepared on cleaned-ITO substrate using a simple physical vapor transport (PVT) method, were subsequently used for construction of the ECL sensors. The developed sensor exhibits high ECL efficiency and excellent stability in the presence of co-reactant tripropylamine. Based on the remarkable detection performance of BPEA MWs/TPrA system, the sensors manifested high sensitive ECL response in a wide linear range with low detection limit for the detection of dopamine, proline or methylene blue, which behaves on the basis of molecule-responsive ECL properties based on different ECL reaction mechanisms. Inspired by this, these sensing systems can be utilized to design OR, XOR and INHIBIT logic gates, which would be used for the determination of dopamine, proline and ethylene blue via logic outputs. Importantly, the individual logic gates can be easily brought together through three-input operations to function as integrated logic gates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app