Add like
Add dislike
Add to saved papers

A three-state model for the photo-Fries rearrangement.

A three-state model for the photo-Fries rearrangement (PFR) is proposed based on multiconfigurational calculations. It provides a comprehensive mechanistic picture of all steps of the reaction, from the photoabsorption to the final tautomerization. The three states participating in the PFR are an aromatic1 ππ*, which absorbs the radiation; a pre-dissociative1 nπ*, which transfers the energy to the dissociative region; and a1 πσ*, along which dissociation occurs. The transfer from1 ππ* to1 nπ* involves pyramidalization of the carbonyl carbon, while transfer from1 nπ* to1 πσ* takes place through CO stretching. Different products are available after a conical intersection with the ground state. Among them is a recombined radical intermediate, which can yield ortho-PFR products after an intramolecular 1,3-H tunneling. The three-state model is developed for phenyl acetate, the basic prototype for the PFR, and it reconciles the theory with a series of observations from time-resolved spectroscopy. It also delivers a rational way to optimize PFR yields, since, as shown for four different systems, diverse substituents can change the energetic order of the1 ππ* and1 nπ* states, preventing or enhancing the PFR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app