Add like
Add dislike
Add to saved papers

Optimization of Subcritical Water Hydrolysis of Rutin into Isoquercetin and Quercetin.

Maximum production of isoquercetin and quercetin simultaneously from rutin by subcritical water hydrolysis (SWH) was optimized using the response surface methodology. Hydrolysis parameters such as temperature, time, and CO2 pressure were selected as independent variables, and isoquercetin and quercetin yields were selected as dependent variables. The regression models of the yield of isoquercetin and quercetin were valid due to the high F-value and low P-value. Furthermore, the high regression coefficient indicated that the polynomial model equation provides a good approximation of experimental results. In maximum production of isoquercetin from rutin, the hydrolysis temperature was the major factor, and the temperature or time can be lower if the CO2 pressure was increased high enough, thereby preventing the degradation of isoquercetin into quercetin. The yield of quercetin was considerably influenced by temperature instead of time and CO2 pressure. The optimal condition for maximum production of isoquercetin and quercetin simultaneously was temperature of 171.4°C, time of 10.0 min, and CO2 pressure of 11.0 MPa, where the predicted maximum yields of isoquercetin and quercetin were 13.7% and 53.3%, respectively. Hydrolysis temperature, time, and CO2 pressure for maximum production of isoquercetin were lower than those of quercetin. Thermal degradation products such as protocatechuic acid and 2,5-dihydroxyacetophenone were observed due to pyrolysis at high temperature. It was concluded that rutin can be easily converted into isoquercetin and quercetin by SWH under CO2 pressure, and this result can be applied for SWH of rutin-rich foodstuffs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app