Add like
Add dislike
Add to saved papers

IGFBP2 plays an important role in heat shock protein 27-mediated cancer progression and metastasis.

Oncotarget 2017 July 6
Heat shock protein 27 (Hsp27) is a key chaperone that interacts with over 200 client proteins. The expression of Hsp27 might be correlated with poor outcome in many types of cancer. Previous study indicated that Hsp27 might be an important biomarker in hepatocellular carcinoma (HCC). However, the detailed mechanism is less well understood. The shRNA-mediated silencing of Hsp27 decreased the proliferation, migration and invasion of HCC cells. In a xenograft model, the silencing of Hsp27 reduced tumor progression. We revealed that the silencing of Hsp27 led to a reduction in insulin-like growth factor binding protein 2 (IGFBP2), which might mediate proliferation and metastasis through vimentin, snail and beta-catenin. The overexpression of IGFBP2 reversed the reductions in cell growth, migration and invasion. The tissue array results showed that HCC patients with high Hsp27 expression exhibited poor prognosis and increased metastasis. The Hsp27 expression was highly correlated with IGFPB2 in CRC specimen. ChIP and luciferase assays showed that Hsp27 does not directly bind the IGFBP2 promoter region to regulate the transcription of IGFBP2. In conclusion, our study demonstrated that Hsp27 is a key mediator of HCC progression and metastasis and that Hsp27 might regulate proliferation and metastasis through IGFBP2. This pathway might provide a new direction for the development of a novel therapeutic strategy for HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app