Add like
Add dislike
Add to saved papers

Sorption of organic pollutants frequently detected in stormwater: evaluation of five potential sorbents.

Adsorption filtration is one of the most promising techniques for removal of dissolved, colloidal and particulate pollutants from stormwater. The aim of this study was to compare the capacity of five filter materials - cellulose, chitosan, chitosan-covered bark, pine bark and polypropylene/polyethylene (PP/PE) fibres - to sorb organic pollutants frequently detected in stormwater, including polycyclic aromatic hydrocarbons (PAHs), alkylphenols and phthalates. In batch tests, synthetic stormwater spiked with a mixture of the organic compounds was contacted with the materials for up to 24 h. The compounds were then liquid-liquid extracted and analysed using GC-MS. Cellulose and chitosan showed very low sorption capacity for the organic contaminants, whereas >70% of the initial concentration of most tested compounds was removed using PP/PE fibres, and >80% with pine bark and chitosan-covered bark. The highest adsorption capacity was found for PAHs (up to 44 µg/g) using PP/PE fibres and bark. For all tested compounds, maximum sorption was approached within 30 min using these materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app