Add like
Add dislike
Add to saved papers

Strain Differences and Effects of Environmental Manipulation on Astrocytes (Glial Fibrillary Acidic Protein), Glucocorticoid Receptor, and Microglia (Iba1) Immunoreactivity between Wistar-Kyoto and Wistar Females.

BACKGROUND: Depression is often associated with an increase in hypothalamic-pituitary-adrenal (HPA) axis reactivity and immune response. To investigate this relationship, we examined the consequences of environmental manipulation on the neural correlates of the HPA axis and immune response in an animal model of depression, the Wistar-Kyoto (WKY) rat. Additionally, female animals are often overlooked in preclinical research because of the hormone fluctuations inherent in the estrous cycle.

METHODS: Female rats were randomly assigned to 1 of 3 environments for 30 days: (1) environmental enrichment (EE), (2) standard housing (SH), and (3) isolated housing (IH). Immunoreactivity of astrocytes (glial fibrillary acidic protein [GFAP]), glucocorticoid receptors (GRs), and microglia (Iba1) in the hippocampus and amygdala were measured using immunohistochemistry.

RESULTS: WKY animals had significantly more GR staining area and Iba1 staining intensity and area in the CA1 of the hippocampus. In enriched Wistar rats, GFAP staining intensity and area were greater in the CA1. A trend towards a greater percent of area stained with GR was found in WKY animals as compared to that of the Wistar animals. This was due to WKY females in EE having significantly higher GR staining intensity and area in the amygdala as compared to that of animals in SH.

DISCUSSION: These strain differences lend support to the use of WKY animals as an animal model of depression. Furthermore, due to the effects of EE on GFAP and GR staining in WKY females, we suggest that EE can be used as an intervention to potentially alleviate the negative effects of depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app