Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.

ACS Synthetic Biology 2017 October 21
Standard approaches for dCas9-based modification of gene expression are limited in the ability to multiplex targets, establish streamlined cassettes, and utilize commonly studied Pol II promoters. In this work, we repurpose the dCas9-VPR activator to act as a dual-mode activator/repressor that can be programmed solely on the basis of target position at gene loci. Furthermore, we implement this approach using a streamlined Pol II-ribozyme system that allows expression of many sgRNAs from a single transcript. By "stepping" dCas9-VPR within the promoter region and ORF we create graded activation and repression (respectively) of target genes, allowing precise control over multiplexed gene modulation. Expression from the Pol II system increased the net amount of sgRNA production in cells by 3.88-fold relative to the Pol III SNR52 promoter, leading to a significant improvement in dCas9-VPR repression strength. Finally, we utilize our Pol II system to create galactose-inducible switching of gene expression states and multiplex constructs capable of modulating up to 4 native genes from a single vector. Our approach represents a significant step toward minimizing DNA required to assemble CRISPR systems in eukaryotes while enhancing the efficacy (greater repression strength), scale (more sgRNAs), and scope (inducibility) of dCas9-mediated gene regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app