Add like
Add dislike
Add to saved papers

Impact of dexmedetomidine on amino acid contents and the cerebral ultrastructure of rats with cerebral ischemia-reperfusion injury.

Purpose:: To investigate the effects of dexmedetomidine (DEX) on amino acid contents and the cerebral ultrastructure of rats with cerebral ischemia-reperfusion injury (I/R).

Methods:: Thirty-six, male, Wistar rats were randomly divided into three groups: the sham operation group (group C), the ischemia-reperfusion group (group I/R), and the DEX group (group D). The middle cerebral artery occlusion model was prepared by the modified Longa method. The time of ischemia was 180 min, and 120 min after reperfusion, the amount of glutamate (Glu), and γ-aminobutyric acid (GABA) in the brain were measured, and the ultrastructure-level changes in the cerebral cortex were examined using electron microscopy.

Results:: Compared to group C, Glu contents in group D, and I/R significantly increased. Compared to group I/R, Glu contents in group D significantly decreased. Compared to group C, GABA contents in group D, and I/R significantly increased, and those in group D significantly increased, as compared to group I/R. The cerebral ultrastructure was normal in group C. Vacuolar degeneration in the plastiosome and nervous processes, was more critical than in group D. Vascular endothelial cells (VEC) were damaged. On the contrary, these changes in group D significantly improved.

Conclusion:: Dexmedetomidine is capable of decreasing glutamergic content, and increasing GABAergic content, in order to decrease the injury of the cerebral ultrastructure, following cerebral ischemia-reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app