Journal Article
Review
Add like
Add dislike
Add to saved papers

A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature.

Research interests on amphibian antimicrobial peptides (AMPs) are currently increasing because of their capability to combat microorganisms from both terrestrial and aquatic environments, which are the warehouses of human pathogens. The most remarkable feature of AMPs are their mechanism of action, primarily targeted to anionic membranes. Researchers have postulated many models to describe peptide- membrane interaction, which leads to membrane permeation/intracellular targeting. Despite these models information regarding the relationship between membrane curvature and peptidemembrane interaction is scarce. This relationship could be clearly depicted using the two-state model and interfacial activity model. In the review, we discuss in detail the two state and interfacial activity models and explain the influence of membrane curvature on peptide binding and the membrane interaction of curvature-sensitive peptides. In addition, the models proposed to explain the mechanism of action of membrane lytic and non-lytic AMPs are also reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app