Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acetylated Signal Transducer and Activator of Transcription 3 Functions as Molecular Adaptor Independent of Transcriptional Activity During Human Cardiogenesis.

Stem Cells 2017 October
Activation of signal transducer and activator of transcription 3 (STAT3) is imperative for mammalian development, specifically cardiogenesis. STAT3 phosphorylation and acetylation are key post-translational modifications that regulate its transcriptional activity. Significance of such modifications during human cardiogenesis remains elusive. Using human pluripotent stem cells to recapitulate cardiogenesis, two independently modified STAT3α (92 kDa) isoforms (phosphorylated and acetylated), which perform divergent functions were identified during cardiomyocyte (CM) formation. Phosphorylated STAT3α functioned as the canonical transcriptional activator, while acetylated STAT3α underwent caspase-3-mediated cleavage to generate a novel STAT3ζ fragment (∼45 kDa), which acted as a molecular adaptor integral to the ErbB4-p38γ signaling cascade in driving CM formation. While STAT3α knockdown perturbed cardiogenesis by eliminating both post-translationally modified STAT3α isoforms, caspase-3 knockdown specifically abrogates the function of acetylated STAT3α, resulting in limited STAT3ζ formation thereby preventing nuclear translocation of key cardiac transcription factor Nkx2-5 that disrupted CM formation. Our findings show the coexistence of two post-translationally modified STAT3α isoforms with distinct functions and define a new role for STAT3 as a molecular adaptor that functions independently of its canonical transcriptional activity during human cardiogenesis. Stem Cells 2017;35:2129-2137.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app