Add like
Add dislike
Add to saved papers

Targeted Feature Recognition Using Mechanical Spatial Filtering with a Low-Cost Compliant Strain Sensor.

Scientific Reports 2017 July 12
A tactile sensing architecture is presented for detection of surface features that have a particular target size, and the concept is demonstrated with a braille pattern. The approach is akin to an inverse of mechanical profilometry. The sensing structure is constructed by suspending a stretchable strain-sensing membrane over a cavity. The structure is moved over the surface, and a signal is generated through mechanical spatial filtering if a feature is small enough to penetrate into the cavity. This simple design is tailorable and can be realized by standard machining or 3D printing. Images of target features can be produced with even a low-cost compliant sensor. In this work a disposable elastomeric piezoresistive strain sensor was used over a cylindrical "finger" part with a groove having a width corresponding to the braille dot size. A model was developed to help understand the working principle and guide finger design, revealing amplification when the cavity matches the feature size. The new sensing concept has the advantages of being easily reconfigured for a variety of sensing problems and retrofitted to a wide range of robotic hands, as well as compatibility with many compliant sensor types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app