Add like
Add dislike
Add to saved papers

Flavonoid Enhances the Glyoxalase Pathway in Cerebellar Neurons to Retain Cellular Functions.

Scientific Reports 2017 July 12
Oxidative stress is damaging to cells and contributes to aging and neurodegenerative disease. This state is mediated by production of imbalanced molecules, and reactive dicarbonyl compounds - mainly methylglyoxal. The glyoxalase pathway is an antioxidant defense system utilized to detoxify methylglyoxal and neutralize free radicals. Pathway dysfunction leads to overproduction and accumulation of toxic, prooxidant compounds. We hypothesize flavonoid treatment as a means to enhance the glyoxalase pathway's ability to detoxify in neurons. This study found that flavonoid treatment in methylglyoxal treated cerebellar neurons increased the functioning of glyoxalase pathway by enhancing expression of glyoxalase-1 and glyoxalase-2 proteins, decreased cell death and increased cellular viability. Flavonoids also significantly contributed in the retention of synaptic functions (VGLUT1 and GAD65) in cerebellar neurons. In addition, flavonoids were found to be involved in pAkt - NF-κB signaling pathway through a reduction in phosphorylation of Akt. The data here show flavonoid compounds have the potential to protect the brain from aging and neurodegenerative disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app