Add like
Add dislike
Add to saved papers

Ammonium chloride alters neuronal excitability and synaptic vesicle release.

Scientific Reports 2017 July 12
Genetically encoded pH-sensors are widely used in studying cell membrane trafficking and membrane protein turnover because they render exo-/endocytosis-associated pH changes to fluorescent signals. For imaging and analysis purposes, high concentration ammonium chloride is routinely used to alkalize intracellular membrane compartments under the assumption that it does not cause long-term effects on cellular processes being studied like neurotransmission. However, pathological studies about hyperammonemia have shown that ammonium is toxic to brain cells especially astrocytes and neurons. Here, we focus on ammonium's physiological impacts on neurons including membrane potential, cytosolic Ca(2+) and synaptic vesicles. We have found that extracellularly applied ammonium chloride as low as 5 mM causes intracellular Ca(2+)-increase and a reduction of vesicle release even after washout. The often-used 50 mM ammonium chloride causes more extensive and persistent changes, including membrane depolarization, prolonged elevation of intracellular Ca(2+) and diminution of releasable synaptic vesicles. Our findings not only help to bridge the discrepancies in previous studies about synaptic vesicle release using those pH-sensors or other vesicle specific reporters, but also suggest an intriguing relationship between intracellular pH and neurotransmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app