Add like
Add dislike
Add to saved papers

The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus unedo, on Their Antibacterial Efficacy.

Nanomaterials 2017 July 11
Silver nanoparticles (AgNPs) have been demonstrated to restrain bacterial growth, while maintaining minimal risk in development of bacterial resistance and human cell toxicity that conventional silver compounds exhibit. Several physical and chemical methods have been reported to synthesize AgNPs. However, these methods are expensive and involve heavy chemical reduction agents. An alternative approach to produce AgNPs in a cost-effective and environmentally friendly way employs a biological pathway using various plant extracts to reduce metal ions. The size control issue, and the stability of nanoparticles, remain some of the latest challenges in such methods. In this study, we used two different concentrations of fresh leaf extract of the plant Arbutus unedo (LEA) as a reducing and stabilizing agent to produce two size variations of AgNPs. UV-Vis spectroscopy, Dynamic Light Scattering, Transmission Electron Microscopy, and zeta potential were applied for the characterization of AgNPs. Both AgNP variations were evaluated for their antibacterial efficacy against the gram-negative species Escherichia coli and Pseudomonas aeruginosa, as well as the gram-positive species Bacillus subtilis and Staphylococcus epidermidis. Although significant differences have been achieved in the nanoparticles' size by varying the plant extract concentration during synthesis, the antibacterial effect was almost the same.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app