Add like
Add dislike
Add to saved papers

The transcription factor C/EBPβ in the dorsal root ganglion contributes to peripheral nerve trauma-induced nociceptive hypersensitivity.

Science Signaling 2017 July 12
Changes in gene transcription in the dorsal root ganglion (DRG) after nerve trauma contribute to the genesis of neuropathic pain. We report that peripheral nerve trauma caused by chronic constriction injury (CCI) increased the abundance of the transcription factor C/EBPβ (CCAAT/enhancer binding protein β) in the DRG. Blocking this increase mitigated the development and maintenance of CCI-induced mechanical, thermal, and cold pain hypersensitivities without affecting basal responses to acute pain and locomotor activity. Conversely, mimicking this increase produced hypersensitivity to mechanical, thermal, or cold pain. In the ipsilateral DRG, C/EBPβ promoted a decrease in the abundance of the voltage-gated potassium channel subunit Kv1.2 and μ opioid receptor (MOR) at the mRNA and protein levels, which would be predicted to increase excitability in the ipsilateral DRG neurons and reduce the efficacy of morphine analgesia. These effects required C/EPBβ-mediated transcriptional activation of Ehmt2 (euchromatic histone-lysine N -methyltransferase 2), which encodes G9a, an epigenetic silencer of the genes encoding Kv1.2 and MOR. Blocking the increase in C/EBPβ in the DRG improved morphine analgesia after CCI. These results suggest that C/EBPβ is an endogenous initiator of neuropathic pain and could be a potential target for the prevention and treatment of this disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app