Add like
Add dislike
Add to saved papers

Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification.

Continuous Countercurrent Tangential Chromatography (CCTC) has been shown to demonstrate significant advantages over column chromatography including higher productivity, lower operational pressure, disposable flow path, and lower resin use. Previous applications of CCTC have been limited to initial capture of monoclonal antibodies (mAb) from clarified cell culture harvest. In this present article, a CCTC system was designed and tested for a post-capture antibody purification step. Mixed mode cation exchange-hydrophobic interaction chromatography resins with two different particle sizes were used to reduce host cell protein (HCP), leached protein A, DNA, and aggregates from a mAb stream after a protein A operation. Product output from CCTC was obtained at a steady-state concentration in sharp contrast to the periodic output of product in multi-column systems. The results show up to 101g of mAb/L of resin/hr productivity, which is 10× higher than in a batch column. A 5% yield increase (95% with CCTC vs. 90% in batch column) resulted from optimizing elution pH within a narrow operational window (pH 4-4.5). Contaminant removal was found to be similar to conventional column performance. Data obtained with the smaller particle size resin showed faster binding kinetics leading to reduced CCTC system volume and increased productivity. Buffer and water usage were modeled to show potential for utilization of in-line mixing and buffer tank volume reduction. The experimental results were used to perform a scale up exercise that predicts a compact CCTC flow path for 500 and 2000L batches using commercially available membranes. These results demonstrate the potential of using CCTC for post-capture operations as an alternative to packed bed chromatography, and provide a framework for the design and development of an integrated continuous bioprocessing platform based on CCTC technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app