Add like
Add dislike
Add to saved papers

[Clinical feature and genetic analysis of a family affected by congenital bile acid synthesis defect type 2: identification of 2 novel mutations in AKR1D1 gene].

Congenital bile acid synthesis defect type 2 (CBAS2) is an autosomal recessive disorder caused by biallelic mutations of AKR1D1 gene, which encodes the Δ4-3-oxo-steroid 5β-reductase. Cholestatic jaundice is the main clinical manifestation, accompanied by malabsorption of fat and fat-soluble vitamins. This paper reported the clinical and genetic features of a CBAS2 patient definitely diagnosed by AKR1D1 genetic analysis. An 8-month-old male infant was referred to the hospital with the complaint of jaundiced skin and sclera over 7 months. On physical examination, growth retardation and malnutrition were discovered besides mild jaundice of the skin and sclera. The liver was palpable 8 cm below the right subcostal margin with medium texture, and the spleen was not enlarged. On liver function test, elevated levels of bilirubin (predominantly conjugated bilirubin) and transaminases were detected, but serum total bile acids and γ-glutamyl transpeptidase levels were within the normal ranges. Liver histopathologic analysis showed disorganized bile ducts, obvious multinucleated giant cells, significant cholestasis in hepatocytes, together with portal and interstitial fibrosis and lymphocytic infiltration. Via next generation sequencing analysis and Sanger sequencing confirmation, the infant proved to be a compound heterozygote of the AKR1D1 variants c.579+2delT and c.853C>T(p.Q285X), two novel mutations originated from his mother and father, respectively. CBAS2 was thus definitely diagnosed, and chenodeoxycholic acid was given orally. As a result, the abnormal liver function and hepatomegaly were improved gradually. On a follow-up 3 months later, a soft liver was palpable 2.5 cm below the right subcostal margin, and all liver function indices recovered to normal ranges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app