COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Comparison of Different Hypotheses Regarding the Spread of Alzheimer's Disease Using Markov Random Fields and Multimodal Imaging.

Alzheimer's disease (AD) is characterized by a cascade of pathological processes that can be assessed in vivo using different neuroimaging methods. Recent research suggests a systematic sequence of pathogenic events on a global biomarker level, but little is known about the associations and dependencies of distinct lesion patterns on a regional level. Markov random fields are a probabilistic graphical modeling approach that represent the interaction between individual random variables by an undirected graph. We propose the novel application of this approach to study the interregional associations and dependencies between multimodal imaging markers of AD pathology and to compare different hypotheses regarding the spread of the disease. We retrieved multimodal imaging data from 577 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative. Mean amyloid load (AV45-PET), glucose metabolism (FDG-PET), and gray matter volume (MRI) were calculated for the six principle nodes of the default mode network- a functional network of brain regions that appears to be preferentially targeted by AD. Multimodal Markov random field models were developed for three different hypotheses regarding the spread of the disease: the "intraregional evolution model", the "trans-neuronal spread" hypothesis, and the "wear-and-tear" hypothesis. The model likelihood to reflect the given data was evaluated using tenfold cross-validation with 1,000 repetitions. The most likely graph structure contained the posterior cingulate cortex as main hub region with edges to various other regions, in accordance with the "wear-and-tear" hypothesis of disease vulnerability. Probabilistic graphical models facilitate the analysis of interactions between several variables in a network model and therefore afford great potential to complement traditional multiple regression analyses in multimodal neuroimaging research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app