Add like
Add dislike
Add to saved papers

Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

Aquatic Toxicology 2017 September
Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co2+ and Ni2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co2+ and Ni2+ (≤0.5mgL-1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL-1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co2+ and Ni2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co2+ and Ni2+ contents (2012.9±18.8 and 1997.7±29.2mgkg-1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co2+ - and Ni2+ -polluted water and high-quality biomass production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app