Add like
Add dislike
Add to saved papers

An adaptive finite element simulation of fretting wear damage at the head-neck taper junction of total hip replacement: The role of taper angle mismatch.

An adaptive finite element simulation was developed to predict fretting wear in a head-neck taper junction of hip joint implant through a two dimensional (2D) model and based on the Archard wear equation. This model represents the most critical section of the head-neck junction which was identified from a 3D model of the junction subjected to one cycle of level gait loading. The 2D model was then used to investigate the effect of angular mismatch between the head and neck components on the material loss and fretting wear process over 4 million gait cycles of walking. Generally, junctions with distal angular mismatches showed a better resistance to fretting wear. The largest area loss in the neck after 4 million cycles of loading was 1.86E-02mm2 which was found in the junction with a proximal mismatch angle of 0.124°. While, the minimum lost area (4.30E-03mm2 ) was found in the junction with a distal angular mismatch of 0.024°. Contact stress, amplitude of sliding and contact length were found as the key parameters that can influence the amount of material loss and the process of fretting wear damage. These parameters vary over the fretting wear cycles and are highly dependent on the type and magnitude of the taper angle mismatch. This study also showed that lost area does not have a linear relationship with the mismatch angle of taper junctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app