Add like
Add dislike
Add to saved papers

Composite Dislocations in Smectic Liquid Crystals.

Smectic liquid crystals are characterized by layers that have a preferred uniform spacing and vanishing curvature in their ground state. Dislocations in smectics play an important role in phase nucleation, layer reorientation, and dynamics. Typically modeled as possessing one line singularity, the layer structure of a dislocation leads to a diverging compression strain as one approaches the defect center, suggesting a large, elastically determined melted core. However, it has been observed that for large charge dislocations, the defect breaks up into two disclinations [C. E. Williams, Philos. Mag. 32, 313 (1975)PHMAA40031-808610.1080/14786437508219956]. Here we investigate the topology of the composite core. Because the smectic cannot twist, transformations between different disclination geometries are highly constrained. We demonstrate the geometric route between them and show that despite enjoying precisely the topological rules of the three-dimensional nematic, the additional structure of line disclinations in three-dimensional smectics localizes transitions to higher-order point singularities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app