JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Free Energy Coupling between DNA Bending and Base Flipping.

Free energy simulations are presented to probe the energetic coupling between DNA bending and the flipping of a central thymine in double stranded DNA 13mers. The energetics are shown to depend on the neighboring base pairs, and upstream C or T or downstream C tended to make flipping more costly. Flipping to the major groove side was generally preferred. Bending aids flipping, by pushing the system up in free energy, but for small and intermediate bending angles the two were uncorrelated. At higher bending angles, bending and flipping became correlated, and bending primed the system for base flipping toward the major groove. Flipping of the 6-4 pyrimidine-pyrimidone and pyrimidine dimer photoproducts is shown to be more facile than for undamaged DNA. For the damages, major groove flipping was preferred, and DNA bending was much facilitated in the 6-4 pyrimidine-pyrimidone damaged system. Aspects of the calculations were verified by structural analyses of protein-DNA complexes with flipped bases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app