Add like
Add dislike
Add to saved papers

Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites.

Small 2017 July 12
Multiwalled carbon nanotube/polymer composites with aligned and isotropic micropores are constructed by a facile ice-templated freeze-drying method in a wide density range, with controllable types and contents of the nanoscale building blocks, in order to tune the shielding performance together with the considerable mechanical and electrical properties. Under the mutual promotion of the frame and porous structure, the lightweight high-performance shielding is achieved: a 2.3 mm thick sample can reach 46.7 and 21.7 dB in the microwave X-band while the density is merely 32.3 and 9.0 mg cm(-3) , respectively. The lowest density corresponds to a value of shielding effectiveness divided by both the density and thickness up to 10(4) dB cm(2) g(-1) , far beyond the conductive polymer composites with other fillers ever reported. The shielding mechanism of the flexible porous materials is further demonstrated by an in situ compression experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app