COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Transient and dynamic DNA supercoiling potently stimulates the leu-500 promoter in Escherichia coli .

The inactive prokaryotic leu-500 promoter (Pleu-500 ) contains a single A-to-G point mutation in the -10 region of the leucine operon promoter, which causes leucine auxotrophy. This promoter can be activated by (-) DNA supercoiling in Escherichia coli topA strains. However, whether this activation arises from global, permanent, or transient, dynamic supercoiling is still not fully understood. In this article, using a newly established in vivo system carrying a pair of divergently coupled promoters, i.e. an IPTG-inducible promoter and Pleu-500 that control the expression of lacZ and luc (the firefly luciferase gene), respectively, we demonstrate that transient, dynamic (-) DNA supercoiling provided by divergent transcription in both wild-type and topA strains can potently activate Pleu-500 We found that this activation depended on the promoter strength and the length of RNA transcripts, which are functional characteristics of transcription-coupled DNA supercoiling (TCDS) precisely predicted by the twin-supercoiled domain model of transcription in which a (+) supercoiled domain is produced ahead of the RNA polymerase and a (-) supercoiled domain behind it. We also demonstrate that TCDS can be generated on topologically open DNA molecules, i.e. linear DNA molecules, in Escherichia coli , suggesting that topological boundaries or barriers are not required for the production of TCDS in vivo This work demonstrates that transient, dynamic TCDS by RNA polymerases is a major chromosome remodeling force in E. coli and greatly influences the nearby, coupled promoters/transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app