Add like
Add dislike
Add to saved papers

Self-assembly of MoO 3 needles in gas current for cubic formation pathway.

Nanoscale 2017 July 21
Nucleation and subsequent rapid growth are enigmatic due to the unrevealed pathways. Despite the relatively simpler mechanism compared to nucleation and growth in solution, that in vapor has received little attention. The largest hindrance to unveiling this process may be observing the rapid and mesoscopic-scale phenomena. To overcome this hindrance, we combine an experimental approach with in situ spatial scanning Fourier-transform infrared spectroscopy, which reveals the nucleating and growing nanoparticles in vapor. The nanoparticles are then collected at different evolutionary stages and analyzed by ex situ transmission electron microscopy (TEM). Needle-shaped molybdenum oxide (MoO3 ) nanoparticles were formed within ∼0.1 s after homogeneous nucleation from a highly supersaturated vapor. Over one second, the needle particles gradually evolved into a cubic shape by fusion in a crystallographically favored orientation in a free-flying state in vapor. The similar sizes of the elongated axes of the needle and cubic structures suggest an additional growth stage, in which the needle particles become the growth units of the cubic particles. The morphology of a final crystal should reflect the formation environment of the particle because growing crystals are sensitive to the formation conditions such as temperature, concentration, and impurities. Although nucleation under very high supersaturation induces the anisotropic growth of the needle particles, this information of the initial nucleation environment is lost in the final cubic crystal. These findings enrich our understanding of pathways in the nucleation and growth of nanoparticles and provide new insights into the growth stages driven by oriented attachment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app