Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection.

Poly(ADP-ribose)polymerase 1 (PARP-1) protein became a popular target for treatment of several types of cancer. A number of PARP-1 inhibitors are currently in clinical trials. Most of them were designed competitors with NAD for a binding site on PARP-1 molecule. This strategy resulted in a discovery of mainly nucleotide-like PARP-1 inhibitors, which may target not only PARP-1 but also other pathways involving NAD and other nucleotides. Many cancer types demonstrate rapid development of resistance to NAD-like PARP-1 inhibitors. Thus, identification and characterization of new small molecules inhibit PARP-1 with high specificity and efficacy is important for the clinical research. We have proposed a new approach to screen libraries for new PARP-1 inhibitors based on histone H4-dependent PARP-1 activation. Beside identification of NAD competitors in a small molecules collection, this approach allows finding other classes of PARP-1 inhibitors that specifically disrupt H4-based PARP-1 activation or arrest inactive allosteric conformation of PARP-1. Here, we present an adaptation of this approach for a large-scale high-throughput screen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app